

NeuroShellOS: An AI-Integrated Operating System - Part 1

"The OS that thinks with you"

A Sample Application of AI-Native Operating System Concepts

Author: Muhammed Shafin P

Executive Summary

What is NeuroShellOS?

NeuroShellOS is a conceptual operating system design that explores how artificial

intelligence can be deeply integrated into the core architecture of a computer system. Unlike

traditional operating systems where AI is an optional add-on or separate application, this

concept proposes making AI a fundamental part of how users interact with their computers.

Key Benefits

Natural Language Interaction: Users could communicate with their computer using

everyday language instead of memorizing complex commands or navigating through

multiple menus.

Contextual Intelligence: The system would understand what you're currently working on

and provide relevant assistance without being asked.

Privacy-First Design: All AI processing happens locally on your device, ensuring your data

and activities remain private.

AI-Assisted Setup: The system simplifies complex Linux environment setups, allowing

developers and hackers to skip manual configuration—AI handles it for them.

Offline Functionality: The system works completely without internet connection, making

it reliable and secure.

Lightweight and Efficient: Even with built-in AI, the system leverages Linux’s

performance and adopts an on-demand execution strategy to reduce background resource

usage. It uses significantly less RAM than traditional OSes like Windows, offering better

speed and control.

Customizable Experience: Users maintain complete control over AI behavior and can

disable features they don't want.

Open Source Philosophy: The concept encourages community development and

transparency in AI integration.

This Document's Purpose

This document represents Part 1(also Sample 1) of a practical exploration of AI-integrated

operating systems. NeuroShellOS serves as a sample application demonstrating how the

base principles of AI-native computing can be implemented in real-world scenarios. This is

one possible interpretation of how AI can be deeply integrated into operating system

architecture while maintaining user privacy and control.

Introduction

The Vision Behind NeuroShellOS

NeuroShellOS is built on the belief that an operating system should be intelligent,

adaptable, and accessible. While traditional systems often require technical expertise and

manual configuration, NeuroShellOS bridges the gap by offering a smarter environment that

understands user intent and simplifies complex tasks.

By leveraging the power of Linux and integrating AI at its core, NeuroShellOS promotes

digital literacy—empowering users to interact with their system more naturally, learn by

doing, and explore advanced computing without barriers.

This isn't just another OS; it's the foundation of a self-evolving, intelligent platform designed

to become the ultimate interface between humans and machines.

Why AI-Native Operating Systems?

In the past, operating systems were silent engines—powerful, but passive. They waited for

commands, offered little guidance, and left users to bridge the gap between human thought

and machine logic. But the world has changed. We no longer need machines that simply

obey—we need systems that understand.

AI-native operating systems represent a new chapter in human-computer interaction. They

are not just tools; they are intelligent companions—systems that learn, adapt, and respond.

They serve as co-pilots for developers, guides for newcomers, and partners for creators,

thinkers, and builders.

NeuroShellOS is built to be just that: a thinking environment. It reduces friction, automates

the complex, and illuminates possibilities the user might not even know existed. It is

designed to elevate digital literacy by removing technical barriers and making advanced

computing feel as natural as speaking or writing.

AI-native OSes aren't just about efficiency—they’re about harmony between human and

machine. A shift from command to collaboration. A future where your OS doesn’t just run

your system—it works with you.

Our Approach to Privacy and Control

NeuroShellOS is built on the belief that intelligence should never compromise privacy.

While modern systems often trade convenience for control, we choose a different path—one

where the user decides everything.

All AI processing runs locally by default, ensuring your data and activity remain fully private.

Nothing is sent or shared without your explicit permission. If the system offers features to

improve itself—such as optional data contribution to expand AI capabilities—it is always up

to you. You choose what to share, when to share, and whether to turn those features on or

off entirely.

From AI behavior to system-level controls, every function in NeuroShellOS is transparent,

customizable, and owned by you. Because real intelligence respects freedom—and puts

users in command.

Core Principles

AI as System Infrastructure

In traditional operating systems, intelligence is layered on top—detached, reactive, and

often optional. But NeuroShellOS reimagines this completely. Here, AI is not an accessory; it

is the very foundation upon which the system breathes, moves, and evolves.

This is not about running a chatbot or launching a voice assistant. It's about an operating

system that understands its user, responds to context, and shapes itself in real time. The AI is

woven deep into the system’s fabric, quietly orchestrating decisions, optimizing

performance, and offering meaningful insights without being told.

Imagine an OS that doesn't wait for you to troubleshoot—it senses the abnormality before it

becomes a problem. One that configures your development environment as you begin

typing, anticipates the tools you'll need, and fades into the background when you d on’t.

In NeuroShellOS, AI is not a tool. It is the pulse of the system. Thoughtful, quiet, and always

present—transforming the machine from a passive servant into an active collaborator.

User Privacy and Control

In an age where data is currency and surveillance is subtle, NeuroShellOS takes a bold and

necessary stance: the system belongs to the user—entirely.

There are no silent observers here. No hidden trackers whispering in the background. Every

process, every AI response, every background decision is visible, accountable, and, most

importantly—optional. Privacy is not a setting. It is the default.

Users are not merely allowed control—they are empowered with it. From turning off

telemetry to choosing whether AI features can access certain files, every choice rests in the

user’s hands. Even data sharing, when used to expand the intelligence of the system, is

always opt-in, never assumed.

NeuroShellOS believes that intelligence without consent is intrusion. That automation

without control is confinement. Here, privacy is not sacrificed for progress—it guides it.

In this operating system, the user is not just a participant.

They are the sovereign.

Offline-First Design

In a world that increasingly demands constant connectivity, NeuroShellOS offers a rare and

radical promise: full intelligence, even in solitude.

Where most systems degrade without the internet—dependent on cloud servers, external

APIs, and remote verification—NeuroShellOS remains fully functional, fully aware, and fully

yours. The intelligence doesn’t vanish when the signal fades. It remains seated at the heart

of the OS, ready to assist, analyze, and adapt—no connection required.

Yes, cloud AI integration is available—for those who want advanced capabilities or

distributed support. But here, offline is not the fallback. It is the default. The system is

designed to think locally, act immediately, and protect your data even in total isolation.

This is more than a technical feature—it’s a philosophy.

An affirmation that autonomy matters. That your OS should serve you whether on the open

web or in complete silence.

In NeuroShellOS, being disconnected is not a limitation.

It is a state of freedom—where your system remains intelligent, private, and empowered by

design.

Open Source Philosophy

NeuroShellOS is not built behind closed doors. It is not guarded by proprietary walls or

veiled by hidden code. Instead, it is shaped in the open—by people, for people.

This system stands on the shoulders of the free and the fearless: the global communities of

developers, thinkers, and rebels who believe that software should be shared, understood,

and improved by all. Every line of code in NeuroShellOS is open for inspection, adaptation,

and contribution.

This isn’t just transparency—it’s trust. The ability to know how your system works, to bend it

to your will, to take part in its evolution. Whether you're reading the source, rewriting a

module, or simply choosing an AI model that aligns with your values, you are part of

something larger.

NeuroShellOS is more than software.

It is a movement—a declaration that intelligence, privacy, and control should never be

locked away.

Open source is not a feature.

It is the soul of the system.

Key Features Overview

Natural Language Interface

NeuroShellOS reimagines the relationship between user and system—not through

commands and code alone, but through natural conversation. Instead of memorizing syntax

or navigating deep menus, users can simply describe their intent, and the system interprets

it with intelligence and accuracy. Whether installing a tool, configuring an environment, or

querying system health, interaction becomes direct, intuitive, and seamless.

Central to this design is a next-generation interface layer, where the GUI, shell, and AI are

not distinct surfaces, but parts of one unified system. The shell interprets logic, the GUI

presents clarity, and the AI brings understanding—all blending into a fluid user experience.

There is no transition between modes or layers; the system flows naturally based on how

the user engages.

This natural interaction is powered by a flexible and scalable AI architecture, built to

support multiple modes of intelligent execution depending on task complexity, performance

needs, and available resources. The system supports:

• LLM + Scripts: where a large language model interprets the user’s request and

directly maps it to fast, modular scripts written in Python, C++, Rust, or other suitable

languages. Ideal for tasks like automation, system configuration, or package

installation.

• LLM + ML + Scripts: used when deeper context, behavioral learning, or usage history

needs to inform decision-making—such as log diagnostics, resource optimization, or

anomaly detection.

• LLM + ML: for real-time suggestions, adaptive UIs, or predictive operations that don’t

require direct system changes but offer smart guidance.

• LLM-only: used in lightweight, offline-first environments, where basic interpretation

and command mapping are needed without additional components.

• Scripts-only fallback: for ultra-minimal environments, where users prefer direct

manual scripting with no AI involvement at all.

• Cloud-only, where all AI reasoning occurs through an online model, with minimal

local impact

• LLM + Scripts + Cloud, blending fast local actions with extended cloud-based context

• LLM + ML + Scripts + Cloud, offering full-system cognition, personalization, and

automation

• Scripts + Cloud, Local scripts run, but cloud assists with some remote intelligence or

data storage, no LLM locally.

• ML + Cloud, ML happens in local environment, without local LLM or scripts.

• LLM + ML + Cloud, LLM models run in the cloud, to save local resources, still using AI

with behavioral learning but no local scripts.

These modules are modular and on-demand—lightweight ML models and scripts only load

when required, ensuring that the system remains fast, responsive, and resource-conscious,

even on lower-end hardware.

For instance, when a user downloads a project from GitHub, they no longer need to

manually read the README, resolve dependencies, and debug installation. Instead, they can

simply say, “Install this project with its dependencies,” or “Run this in isolated d eveloper

mode.” The system intelligently reads the structure, understands the context, and performs

the required actions—with full transparency and optional user approval.

Importantly, the presence of AI does not restrict the user. NeuroShellOS is fully usable in

both AI-enhanced and manual modes. Users can switch to direct shell access, run scripts

manually, write code, or use traditional package managers. The AI is a co-pilot—not a

gatekeeper—and its behavior can be enabled, disabled, tuned, or extended at any time.

What makes this interface even more powerful is its portability. With official extensions, the

same natural language layer can be embedded into applications like VSCode, terminal

emulators, and developer dashboards—allowing users to access NeuroShellOS intelligence

even when working outside the core OS interface.

This is more than just a feature. It’s a philosophy: interaction should be expressive, flexible,

and never limited by technical friction. NeuroShellOS’s natural language interface brings the

user and system closer together—merging intelligence, clarity, and control into a single,

seamless experience.

Smart System Assistant

At the heart of NeuroShellOS lies a deeply integrated, intelligent system assistant—designed

not as a layer on top, but as a native component of the OS itself. This assistant is not a

passive add-on; it is a responsive, observant, and adaptive part of the system’s core. Its

purpose is to reduce friction, boost productivity, and expand user capability without

unnecessary intrusion.

This assistant can configure secure developer environments, automate installations, monitor

performance, and respond to unusual system activity with precision. Whether debugging

code, setting up runtime environments, or managing updates, the assistant offers relevant,

timely support—always in tune with user goals, and always respectful of their space.

What makes this assistant unique is how deeply it is woven into the visual and functional

structure of the OS. A dedicated GUI package has been created exclusively for

NeuroShellOS—not simply to make the system look modern, but to reimagine interaction

around intelligence. This GUI is lightweight yet powerful, designed from the ground up for

responsiveness, clarity, and adaptability. It is more than a desktop; it is a canvas for

intelligent interaction.

The GUI supports custom themes, modular tile layouts, dynamic dashboards, and real-time

visual extensions of assistant actions. Users can personalize their interface deeply—

rearranging elements, applying curated styles, or even creating and sharing their own UI

packages. For developers and designers, the system allows complete GUI extensibility,

enabling the creation of custom control panels, skins, and assistant-integrated interfaces

with minimal overhead. All customization can be performed manually or with the support

of the built-in AI. When AI is enabled, the customization process becomes significantly

simpler—suggesting layouts, adapting to usage patterns, and applying optimized designs

based on user preferences. Whether handcrafted or guided by intelligence, the interface

remains deeply flexible, giving users full control over how their environment looks and

behaves.

The Smart Assistant lives inside this interface—not as a widget, but as a layer of awareness

that informs and enhances every element. It helps users navigate, acts as a guide through

settings, configures systems visually, and adapts the GUI based on activity or preferences.

The result is not just a smart assistant—but a smart interface, where the environment itself

evolves with the user.

Behind the scenes, the assistant operates through a modular AI execution framework that

supports various intelligent configurations:

• LLM + Scripts: where a large language model interprets the user’s request and

directly maps it to fast, modular scripts written in Python, C++, Rust, or other suitable

languages. Ideal for tasks like automation, system configuration, or package

installation.

• LLM + ML + Scripts: used when deeper context, behavioral learning, or usage history

needs to inform decision-making—such as log diagnostics, resource optimization, or

anomaly detection.

• LLM + ML: for real-time suggestions, adaptive UIs, or predictive operations that don’t

require direct system changes but offer smart guidance.

• LLM-only: used in lightweight, offline-first environments, where basic interpretation

and command mapping are needed without additional components.

• Scripts-only fallback: for ultra-minimal environments, where users prefer direct

manual scripting with no AI involvement at all.

• Cloud-only, where all AI reasoning occurs through an online model, with minimal

local impact

• LLM + Scripts + Cloud, blending fast local actions with extended cloud-based context

• LLM + ML + Scripts + Cloud, offering full-system cognition, personalization, and

automation

• Scripts + Cloud, Local scripts run, but cloud assists with some remote intelligence or

data storage, no LLM locally.

• ML + Cloud, ML happens in local environment, without local LLM or scripts.

• LLM + ML + Cloud, LLM models run in the cloud, to save local resources, still using AI

with behavioral learning but no local scripts.

Each of these modes is on-demand and configurable. Lightweight scripts or ML models are

triggered only when necessary, ensuring high performance even on modest hardware. By

default, the assistant runs locally with minimal footprint, but when users enable cloud

connectivity, it expands—gaining access to large-scale reasoning, persistent memory, and

broader integrations.

Whether used for intelligent help, automation, customization, or creative expression, the

assistant stays within bounds. It suggests, it assists—but it never overrides. And when paired

with the user-defined GUI, it becomes an adaptive visual partner, reflecting not only the

user’s commands—but their style, habits, and preferred flow.

In NeuroShellOS, the Smart System Assistant is not an accessory. It is a silent co-creator—

present across the system, visible through its evolving interface, and aligned with the user at

every level of design, function, and decision-making.

User Privacy and Control

NeuroShellOS is built on the belief that intelligence should never come at the cost of

autonomy. In a world where AI-driven systems often blur the boundaries between helpful

and invasive, NeuroShellOS takes a clear, deliberate stance: the user is always in control.

Every intelligent feature—from the assistant to background models—is transparent,

optional, and tunable. The system does not collect personal data unless explicitly permitted.

Users can inspect, pause, or disable any component of the AI infrastructure at any time,

without affecting the core functionality of the OS. By default, all key features run offline, and

cloud connectivity is never assumed.

Users decide whether to allow system data to be used to improve AI behavior, or whether to

opt out entirely. Even when data-sharing is enabled, the system makes it clear what

information is being accessed, where it is processed, and for what purpose. There are no

silent uploads, no hidden analytics, and no locked settings.

This philosophy of control extends into the system assistant, automation routines, and ML

models. All logs, learning patterns, and smart behavior are local-first by design. The assistant

does not retain session memory unless the user requests it. The user interface itself offers

visibility into every action the AI takes, and every recommendation is delivered with

reasoning—never as a black box.

Most importantly, if the AI ever initiates an action that is irreversible, critical to system

integrity, or impacts security or personal data, it will pause and request user confirmation.

This may come in the form of a prompt to resubmit, verify intent, or review the

implications before proceeding. NeuroShellOS does not allow any AI-driven process to make

permanent decisions without clear, informed user approval.

To give users layered control, system settings are divided into two primary GUI modes:

• A Basic mode, with streamlined and essential options for everyday use.

• An Advanced mode, which unlocks broader controls over AI behavior, privacy

management, system optimization, execution layers, and feature tuning.

A toggle switch within the GUI allows seamless switching between Basic and Advanced

modes. In Advanced mode, users can see and control deeper parts of the system. From here,

they may also activate Developer Mode—a powerful configuration layer meant for

advanced users.

Developer Mode includes highly detailed options such as real-time model tuning, assistant

debugging tools, sandbox configuration, internal service management, and experimental

settings. These controls may appear as additional GUI panels, CLI overlays, or hybrid tools—

depending on module complexity. This mode can be safely deactivated, returning the user

back to Advanced mode, and then optionally back to Basic via the same toggle mechanism.

When a user chooses to integrate cloud-based models, that decision is made explicitly. No

automatic switch to cloud occurs. And even then, users can select exactly which features use

the cloud, define what is allowed to leave the system, and toggle those permissions at any

time.

NeuroShellOS treats privacy not as a settings page, but as a right built into the system

architecture. From initial setup to daily use, the system communicates with clarity, respects

user agency, and ensures that every action the AI takes is both visible and reversible—unless

the user agrees otherwise.

In an ecosystem where AI is everywhere, NeuroShellOS dares to place users at the center—

not just as operators, but as the final authority over their system and their data.

Flexible Operating Modes

NeuroShellOS is not built for one type of user—it is built for all. Whether you're a

beginner exploring Linux for the first time, a power user building complex workflows, or a

developer fine-tuning AI behaviors, the system adjusts to your comfort, skill, and intent.

At its core, NeuroShellOS supports multiple operating modes, each tailored to a different

kind of interaction:

• Manual Mode: Ideal for users who prefer full control. All actions are initiated by the

user, with traditional CLI or GUI workflows. The AI remains passive, only offering

suggestions if asked.

• Semi-Automated Mode: For users who want intelligent assistance but retain decision

authority. The assistant can suggest actions, pre-fill configurations, summarize logs,

or prep environments—but nothing is executed without confirmation.

• Fully AI-Assisted Mode: Enables the assistant to take broader initiative—performing

trusted tasks automatically, resolving common system issues, or adjusting settings

based on behavioral patterns. All key actions remain visible, explainable, and

reversible.

• Custom Mode: Offers complete user-defined control. Users can mix and match

features from any mode—deciding which parts of the system are automated, which

remain manual, and how the assistant should behave in specific contexts.

Preferences can be saved as profiles and switched dynamically.

In addition to interaction modes, performance-based execution modes further refine

system behavior based on available resources and user priorities. These include:

• Low Resource – Minimizes system resource usage; ideal for lightweight systems and

battery conservation.

• Low Resource Vega – Uses cloud computing wherever possible to offload processing

and preserve device performance.

• Mid Performance – Balanced mode for stable multitasking with moderate local AI

and assistant features.

• Mid Performance Vega – Enhances responsiveness through cloud integration while

maintaining efficient local performance.

• High Performance – Unlocks deeper system intelligence and responsiveness with

heavier local AI operations.

• High Performance Vega – Combines high local AI processing with scalable cloud

support for optimized throughput.

• Ultra Mode – Enables full system capabilities for maximum AI assistance,

responsiveness, and customization.

• Ultra Vega Mode – Maximum performance with aggressive use of cloud services to

accelerate AI and background models.

The "Vega" variants are cloud-augmented profiles that dynamically shift heavier AI logic and

background tasks to the cloud—reducing local hardware strain while maintaining full

functionality. These are especially useful on devices with limited memory or processing

power, allowing advanced features without compromise.

All modes—whether behavioral or performance-based—are modular and reversible. Users

can switch between them at any time, apply them to specific workflows, or configure

transitions based on power, temperature, or network conditions.

The interface and tooling are also dual-layered: GUI dashboards and CLI interfaces coexist

and interact with shared intelligence. Whether through visual tiles or shell commands, the

experience adapts without friction.

Furthermore, the system is environment-aware. It detects when the user is offline,

resource-limited, or working in secure environments and automatically scales down

background services. Once resources return or connectivity is restored, extended

capabilities reactivate smoothly.

Some advanced optimization features and extended mode capabilities depend on the

chosen edition of NeuroShellOS. These are detailed in the Editions section, where each

system build is tailored for different use cases and performance tiers.

In NeuroShellOS, flexibility is not an extra—it is the foundation. The system transforms itself

to fit the way each user works, thinks, and evolves.

LLM and Helper System Architecture
NeuroShellOS is architected around a multi-layered intelligence model designed for high

performance, modularity, and complete user control. At the core lies a purpose-trained

Linux-focused LLM, tightly integrated with a set of on-demand helper modules and

lightweight ML components—all coordinated through a minimal resource management

system.

Core LLM for Linux Intelligence

The system includes a compact yet capable LLM trained exclusively on Linux system-level

tasks, commands, and developer workflows. This model is designed to operate fully offline,

delivering fast and context-aware assistance across both GUI and CLI environments.

• Training Scope: Linux-specific knowledge base

• Token Size: Approximately 80M to 120M tokens

• Format: Optimized for efficient local inference

• Quantization Support: Full-precision or quantized variants, auto-selected based on

system performance

• Runtime Engine: Powered by the best-performing local inference engine available for

the device

This LLM setup reflects the base configuration of NeuroShellOS. However, the integration,

features, and deployment options may vary between editions:

• During installation, users may choose from different LLM builds depending on their

system’s capabilities—selecting lightweight, balanced, or full-performance variants.

• Alternatively, users may opt to install all LLM performance levels, enabling dynamic

switching depending on workload or resource conditions.

• LLMs and associated AI packages are retrieved via edition-specific repositories. For

example, a desktop edition will only have access to components, tools, and LLMs

tailored to its performance and interface class.

• LLMs can be changed, replaced, or updated—but always within the defined scope

of the installed edition, ensuring system integrity and compatibility.

• These repositories may include expanded features, performance-tuned versions, or

updated models—strictly filtered by edition identity.

Edition boundaries are maintained to avoid unnecessary complexity or incompatibility. This

safeguards system stability while still allowing deep customization inside each edition’s

sandbox.

AI Engine (Interface Controller)

At the heart of the system’s intelligent behavior lies the AI Engine, also referred to as the AI

Interface Controller. This is the central coordination layer that governs all AI-driven

components, user interactions, and intelligent decisions within NeuroShellOS. It acts as the

unified bridge between the core LLM, helper scripts, modular ML models, system logic, and

user-facing interfaces (both GUI and shell).

It is responsible for:

• Interpreting and processing user prompts or system events

• Routing tasks to the appropriate intelligence layer (LLM, ML, script, service)

• Managing all AI-related input/output across the OS

• Handling all communication with cloud-based AI modules, when enabled

• Providing a secure, extensible control path for AI-driven operations

• Including and managing the lightweight Orchestrator that controls on-demand

execution of scripts and modular ML models

The Orchestrator is an internal subsystem of the AI Engine. It is responsible for detecting

when lightweight helpers or background ML components are required, launching them only

when needed, and releasing system resources once their task is complete. It operates

entirely under the AI Engine’s control.

Edition-Specific Behavior

The structure and capabilities of the AI Engine differ across NeuroShellOS editions:

• In offline-first or lightweight editions, the AI Engine is minimal and optimized for fast,

local interaction

• In full-featured or cloud-enhanced editions, it enables advanced routing, persistent

background logic, context memory, voice interfaces, cloud sync, and modular

extension support

• The AI Engine also determines which version of the orchestrator and assistant

modules are loaded, based on edition constraints

Even though the engine remains consistent in core function, its complexity, depth, and

feature access are strictly edition-aware.

Extensibility & Control

The AI Engine supports full user configurability:

• Basic and Advanced modes offer toggle access to assistant depth, automation, and

interaction scope

• Developer Mode enables power users to modify routing logic, inject or replace

modules, and build deeply customized experiences

• The controller handles all AI-related triggers, context routing, cloud permissions, and

system integration points—ensuring a secure and predictable environment

Through this unified interface, NeuroShellOS achieves true AI-native system structure.

Whether offline or hybrid, minimal or powerful, every AI operation in the system—LLM

execution, helper activation, script automation, or cloud cognition—flows through the AI

Engine and its orchestrated intelligence pipeline.

Beyond Linux: Cross-Platform Plans and

Specialized Variants
While NeuroShellOS is primarily built on a Linux foundation, its core architecture and AI-

driven infrastructure are designed to be extendable far beyond traditional desktops and

laptops. The system's core concepts—offline AI integration, script-based automation,

modular ML components, and a flexible orchestrator—can be adapted to run on other

platforms with tailored optimizations.

One of the most promising directions includes a dedicated Android-based variant, currently

being conceptualized in three editions:

• Gamer Edition, focusing on performance, tuning, and AI-assisted controls

• Hacker Edition, optimized for terminal access, networking tools, and developer-grade

control

• Normal Edition, intended for daily use, smart assistance, and AI-supported

messaging, browsing, and utilities

These Android editions are planned to offer a distinct experience compared to traditional

Android builds, with an AI-native overlay, unique GUI, and tightly integrated assistant

support. However, due to performance and compatibility requirements, these editions are

targeted only at select Snapdragon-based devices capable of handling onboard AI tasks or

bridging with the cloud.

Another lightweight deployment is planned for Raspberry Pi boards, where the system

architecture takes a different path: instead of a full LLM running locally, the design

emphasizes on-demand ML models, lightweight scripts, and orchestrated behaviors to

simulate LLM-level intelligence in a highly optimized way. These builds will be ideal for edge

computing, local automation, or intelligent IoT tasks with limited resources.

Looking even further ahead, a conceptual hardware platform inspired by ESP32-class

microcontrollers is being planned. This custom microcontroller—or low-power board—

would be purpose-built for running NeuroShellOS-like behavior, with embedded ML

capabilities, a real-time orchestrator, and optional cloud fallback. Although still conceptual,

this idea reflects the goal of making AI-native OS architecture accessible even in ultra-

constrained environments.

In all cases, the goal is not just platform portability, but platform-specific intelligence, where

each build uses the available resources—whether it's a high-end SoC, a Raspberry Pi, or a

custom chip—to deliver an adaptive, AI-enhanced, privacy-aware experience.

User Editions

The editions listed here represent only a few sample categories. Many more specialized or

hybrid editions can be built in the future based on user needs and hardware capabilities.

Each edition has its own unique set of features such as security configurations, GUI

customization options, performance tuning, hardware-specific optimizations, etc.—each

tailored to the edition’s intended purpose and tier. While only the main, explicitly defined

features are mentioned here, every edition includes additional underlying enhancements

such as hardened modules, access control policies, GUI-level restrictions, custom

integrations, etc., based on its role. These ensure that each edition is secure, responsive, and

purpose-optimized. Minimum system requirements, included tools, and feature scope will

also vary between editions. If any tiers are listed, they include all performance modes

described in the Key Features Overview section. However, each mode will operate within the

maximum and minimum limits defined by that specific tier’s capabilities.

Desktop Edition – Tiered Structure Overview

The Desktop Edition is available in four performance-based variants—Base, Tier 1, Tier 2,

and Tier 3. All tiers include the full feature framework, including the core LLM, the AI Engine

(Interface Controller), orchestration logic, and assistant modules. However, each tier differs

in the depth of integration, system-level enhancements, and pre-configured capabilities.

Importantly, users can upgrade or extend any tier using official repositories, updates, or

edition-specific packages.

Base

The Base version acts as a lightweight software-mimic layer of the full system. While it

contains all core AI logic—including the full LLM, orchestration control, and GUI access—the

rest of the components (like ML models, background security tools, and advanced modules)

are kept minimal or disabled by default. Its AI Engine operates with general-purpose logic,

with fewer system-specific optimizations. This edition is ideal for legacy hardware, basic

users, or those who want to customize from a minimal starting point.

Base includes structural placeholders and compatibility for all features available in higher

tiers, allowing users to add them later via updates, package repositories, or performance

upgrades.

Tier 1

Tier 1 builds directly upon Base, enhancing it with an optimized AI Engine that includes

smarter execution paths, reduced latency, and adaptive performance tuning. All major

features from Base are retained, but with improved responsiveness and slightly deeper

integration. Think of it as the same software but with built-in efficiencies, suitable for mid-

range devices or users who want a smoother experience with minimal setup.

Tier 2

Tier 2 adds its own capability layer beyond just performance. It introduces security-oriented

modules, including a lightweight and extendable local threat database, integrated threat

detection scripts, and assistant-supported defensive automation. This makes the edition

suitable for users concerned with integrity, basic malware protection, or offline monitoring.

The AI Engine here gains additional control hooks tied to system state, shell monitoring, and

safe automation. GUI customization, assistant overlays, and system diagnostics are more

deeply tied into user context.

Tier 3

Tier 3 delivers the highest-level Desktop Edition experience, merging full-system

intelligence with AI-driven security, automation, and adaptive control. It includes everything

from the lower tiers and adds:

• Expanded threat defense capabilities (advanced rule sets, customizable filters,

signature updates)

• Full-scale assistant overlay support with visual system feedback

• Advanced scheduling, automation triggers, and AI-based optimization of tasks

• Deeper local + cloud orchestration switching

• User-controlled AI autonomy levels (prompt-based, proactive, hybrid modes, Full

Autonomy Mode(will be for advanced users))

Tier 3 is ideal for high-end desktop users who want total control, rich AI automation, and in-

depth system introspection.

Backward Compatibility & Tier Flexibility

The NeuroShellOS tier system is designed to support both upward and downward

transitions. While any lower-tier system can be upgraded to a higher tier by adding

components (through package repos, updates, or edition installers), downgrading or

reverting to a previous tier is also possible—as long as the user confirms removal of the

higher-tier modules, configurations, and dependencies.

The OS maintains tier-aware system states, allowing rollback or reconfiguration without

needing a full reinstall. This flexibility ensures that users can scale the OS up or down based

on their hardware, preferences, or resource availability, without breaking core

functionality.

Developer Edition (Programmers, Builders & Tinkerers)

The Developer Edition of NeuroShellOS is designed for programmers, open-source builders,

and system engineers who want deep control over their environment while enjoying

intelligent, assistant-enhanced workflows. It includes all core components from the Desktop

Edition, along with expanded developer-specific capabilities such as AI-powered shell and

GUI integration, live feedback systems, and smart automation tools for coding, debugging,

and deployment.

A major highlight is the plugin-based integration with external development tools and IDEs.

The system’s AI Engine can interface directly with supported editors (such as VSCode-style

environments), offering features like smart code suggestions, dependency automation, AI-

assisted refactoring, and shell command augmentation—turning development environments

into intelligent assistants.

The Developer Edition is available in five capability tiers, each refining performance, tooling

depth, and system-level integration:

• Base

Includes essential CLI tools, assistant overlays, and mimic-style versions of advanced

features like debugging and automation. Optimized for low-resource systems or

minimalist setups.

This tier removes non-essential Desktop components such as media dashboards,

document viewers, and other general-use UI layers—ensuring a clean and focused

development environment.

• Mid

Enables full versions of development features: plugin support for editors, AI-guided

shell assistance, context-aware script generation, and basic system optimization.

Introduces light security hooks, system auditing, and responsive scripting tools.

• High

Adds more advanced system-level security tools, including live process monitoring,

sandboxed script execution, and rule-based AI logic gates. Also includes Desktop

Edition features that are specifically useful for developers, like GUI automation

helpers, quick-access overlays, and live feedback panels.

Adds localhost testing, sandboxed environments, and modular VM layers for isolated

development and testing workflows.

• Ultra

Delivers advanced AI capabilities, multi-project context awareness, custom

orchestration APIs, and full-scale automation pipelines. Comes with intelligent

profiling, real-time optimization assistance, and adaptive assistant workflows.

Consumes more system resources, but significantly improves development speed

and automation depth.

• Epic (Experimental)

Pushes toward self-correcting development. The system interprets intent, executes

tasks automatically, and refines results in real-time—building and correcting code or

environments until the desired outcome is achieved. Built for cutting-edge

experimentation.

All tiers share the core LLM, plugin architecture, and orchestration controller. Security and

optimization features begin at Mid and expand in scope through High, Ultra, and Epic.

Each tier builds on the previous while maintaining backward and forward

compatibility(except for the Epic tier, which is isolated due to its experimental nature and

not guaranteed to support tier rollback or forward-porting), allowing developers to move

across configurations dynamically via updates and repo modules.

Security Edition

The Security Edition of NeuroShellOS is engineered to support the entire lifecycle of

cybersecurity operations—from reconnaissance and penetration testing to digital forensics

and live defense analysis. It is not just a collection of tools, but a thoughtfully constructed

operating environment that supports intelligent workflows, rapid deployment, secure

isolation, and minimal configuration overhead.

Unlike traditional security-focused OS distributions, this edition is pre-configured with

custom drivers, controlled system services, and security-aware behaviors from the ground

up. From the Base tier, it provides a stable and ready environment that includes elements

drawn from the Developer Edition when directly useful—such as low-level debuggers or

interpreter support—while intentionally excluding heavier components like full-stack

development environments or UI builders.

Every tier focuses on clarity, control, and precise adaptability for security professionals. The

system is lean, intelligent, and fully optimized for offline or air-gapped use—but can scale

into AI-assisted simulations and controlled cloud interactions in higher tiers.

• Base

A secure, minimal foundation with essential shell utilities, forensic-ready tooling, and

hardened driver and service defaults. The environment is locked down for testing

and exploration, offering only the developer-grade components necessary for

introspection or script logic. It is designed for USB/live use, clean lab setups, or

hardened installation.

• Mid

Expands the toolset to include passive network scanners, data extractors, local audit

tools, and lightweight scripting assistants. A small optimization engine is introduced

in this tier: when activated, it monitors for system strain during intensive tasks (e.g.,

heavy network captures, large file inspections), and can automatically free resources

by disabling unnecessary services or GUI elements temporarily. This engine is

lightweight, uses minimal RAM, and requires no manual tuning—perfect for laptops

or constrained devices. Basic AI assistance is also introduced for tool usage guidance

and setup tasks.

• High

Adds intelligent resource isolation for local execution environments and support for

disposable sandboxed test setups. Users can simulate exploits or inspect payloads in

system-controlled containers with defined memory, storage, and driver constraints.

Adds in debugging and reverse engineering utilities from the Developer Edition as

needed but avoids full development stacks. Supports persistent lab state

management and limited automation.

• Ultra

Unlocks orchestration for full-scale red/blue simulations, AI-guided adversarial

modeling, and network-wide behavior tracing. From this tier, users gain access to:

o Fully configurable disposable VMs

o Driver and kernel module control at the sandbox level

o Memory and compute capping

o Scripted or AI-triggered scenario execution

o Intelligent monitoring of toolchain usage and performance

VM behavior can be predeclared (headless or interactive, isolated or

connected), with optional on-demand provisioning from a curated tool

repository.

• Epic (Experimental & Standalone)

Designed for high-end research and autonomous testing environments, this tier

enables advanced logic workflows, including AI-guided exploitation simulations and

scenario orchestration from minimal input (e.g., target IP or attack surface

descriptor). All operations are confined within secure, AI-managed sandboxes.

Epic includes deep scripting and binary analysis capabilities derived from the

Developer Edition but remains interface-light and focused solely on security

execution. Due to its autonomy and isolation architecture, it is deployed separately

and cannot be dynamically enabled or downgraded.

NeuroShellOS Security Edition is built not merely to provide tools, but to create an

intelligent, responsive operating environment for real security work. Every layer, from drivers

to orchestration, is configured with cybersecurity tasks in mind.

It shares only the most relevant developer features, introduces a light optimization layer in

Mid tier, and offers fine-grained control over system behavior across all levels.

The entire tier system—from Base to Ultra—is designed to be fully forward- and backward-

compatible, allowing users to upgrade or downgrade between tiers based on need or

hardware capacity. Only the Epic tier stands apart as a self-contained, experimental tier, due

to its advanced orchestration logic and isolated architecture.

Education Edition

The Education Edition of NeuroShellOS is purpose-built for learning—centered around

computer science education but also supporting a broad spectrum of general knowledge

and digital literacy needs. This edition offers a distraction-free, intelligent environment for

schools, universities, online learners, and technical bootcamps.

From the Base tier, users have access to curated knowledge, beginner tools, and a clean OS

environment ideal for introductory computing. As users progress through tiers, they gain

increasing levels of AI-powered interaction, file-based learning support, and content-driven

automation. The OS is designed to grow with the learner—offering personalized help,

secure experimentation, and seamless performance on even low-spec systems.

• Base

A stable, lightweight setup ideal for basic education. It includes essential tools such

as word processors, code editors, and preloaded general knowledge modules

covering computing basics, digital safety, and logic concepts. It emphasizes simplicity,

security, and accessibility.

• Mid

Introduces enhanced learning features powered by a local AI engine. From this tier:

o Students can upload PDFs, TXT files, or structured documents to extract

summaries, generate notes, or ask questions about the content.

o The system transforms these materials into interactive learning experiences.

o If cloud AI support is enabled, the assistant provides richer analysis, deeper

summarization, and adaptive questioning based on the uploaded content.

Teachers benefit from lesson planning tools and content-based AI suggestions

to assist in lectures or assignments.

• High

Offers project-based coding environments with sandboxing, curriculum

customization, and support for safe student experimentation. Includes offline lab

modules, structured code tutorials, and document-to-exercise generation. Teachers

gain full control over classroom modules and progress analytics, including support for

multiple file formats (Markdown, CSV, HTML).

• Ultra

Enables AI-curated learning tracks, real-time collaboration tools, performance

dashboards, and integrated assessment engines. Educators can convert entire

curriculum documents into labs, practice tests, or review assignments with minimal

manual effort. The AI can even recommend content paths based on learning

behavior and historical interactions.

• Epic (Experimental & Controlled Use Only)

Built for advanced research and institutional education. This tier supports:

o Automated lab setup from academic papers, research files, or structured PDFs

o AI-assisted grading and feedback loops

o Intelligent synthesis of reading materials and structured learning flows

Epic is an isolated tier and designed for supervised deployment only.

From the Mid tier onward, NeuroShellOS Education Edition empowers students to learn not

only through applications, but directly from their own documents. With just a file upload —

be it a textbook PDF or a handwritten scan—students can receive summaries, generate

notes, or create exercises.

And with cloud AI enabled, results are even more adaptive, context-aware, and detailed.

All standard tiers—Base through Ultra—are fully forward- and backward-compatible,

allowing seamless upgrades or tier changes. The Epic tier, due to its autonomous structure,

remains isolated and not upgradeable from other tiers.

Creative Edition

The Creative Edition of NeuroShellOS empowers individuals and teams working across

artistic disciplines—writers, visual designers, audio producers, editors, animators, and

multimedia creators. Built on a performance-optimized Linux base, it merges reliability with

creative flexibility, offering responsive assistance, automation, and intelligent tools for varied

creative needs.

This edition prioritizes modular tools, aesthetic interfaces, and low-friction workflows. While

it avoids default resource-heavy generation models, it gives users the ability to scale up

creative AI only when needed—either via installed models or via cloud-connected options.

• Base

A minimalist, focused workspace supporting markdown writing, sketch viewing,

audio journaling, and structured project planning. It emphasizes visual clarity,

reduced noise, and clean file-based workflows for creators who want speed and

simplicity.

• Mid

Introduces lightweight creative AI support including:

o Prompt generation, naming help, and structural outlining

o Auto-tagging and organizing assets

o Text-based editing guidance and captioning

By default, heavy creative generation (image/audio/video) is not available at

this tier.

However, if cloud AI support is enabled, users may optionally access

generation features through remote resources—allowing Mid-tier systems to

create complex content without local model burden.

• High

Adds support for creative pipeline scripting, templating, and enhanced AI co-editing.

The assistant can:

o Analyze multimedia drafts

o Offer suggestions across mediums (text, voice, layout)

o Track versions and patterns for reuse

Still optimized for resource-conscious environments, but also cloud-enabled

for expanded generation access if permitted.

• Ultra

Unlocks native multi-modal generation features such as:

o Image generation

o Music or audio synthesis

o Animated storyboard generation

These run either locally (with higher-spec hardware) or via configured cloud

resources. The assistant can now fully participate in the creative cycle—

generating, refining, and integrating outputs in real-time across supported

tools.

• Epic (Experimental & Controlled Use Only)

A sandboxed, high-performance environment for AI-driven creativity labs and

production studios. Offers:

o Multi-agent synthesis and remixing

o Generative orchestration of projects

o Distributed inference for large-scale creative workflows

Epic remains isolated from lower tiers due to its experimental infrastructure.

NeuroShellOS Creative Edition is designed to be flexible. By default, heavy generation tasks

are reserved for Ultra and Epic tiers to preserve performance.

But if cloud AI is enabled, even Mid or High tiers can access generation capabilities—

without the need for local model hosting.

All standard tiers (Base through Ultra) are forward- and backward-compatible, while Epic

operates independently for high-end, experimental use cases.

Gamer Edition

The Gamer Edition of NeuroShellOS transforms Linux into a high-performance, AI-assisted

gaming environment tailored for both casual and competitive needs.

While gaming on Linux is still evolving, it already shows immense potential—especially when

it comes to resource efficiency. Unlike traditional OS platforms that often carry heavy system

loads in the background, a well-optimized Linux environment can achieve higher

performance with significantly lower resource usage. This becomes especially impactful

when Linux is used solely for gaming: eliminating unnecessary services, minimizing

overhead, and offering far greater control than typical Windows setups.

NeuroShellOS Gamer Edition builds on this advantage, using a carefully constructed

architecture that maximizes performance, reliability, and user freedom. It intelligently

handles WINE and Proton layers to ensure seamless execution of non-native titles while

offering manual or AI-assisted optimizations.

Critically, this edition is built only on tested, stable base systems and kernels selected

specifically for low-latency gaming, Vulkan readiness, input responsiveness, and I/O speed.

Whether you’re tuning your system manually or relying on the assistant to configure your

drivers, shaders, and launch parameters, the Gamer Edition provides true flexibility,

precision, and an OS that feels purpose-built for play.

It features low-latency controls, game-specific optimization profiles, and optional AI

automation—all governed by the user and adaptable to every level of gamer, from casual

players to competitive streamers.

Gaming Mode

A central feature of all tiers is the Gaming Mode toggle:

When enabled, it suspends non-essential components like the AI Core, Orchestrator, and

background analytics to dedicate system resources fully to gameplay.

Common Features Across All Tiers

• Game Center

Unified launcher and dashboard for native, emulated, and cloud games

o AI-based game detection for automatic setup

o Manual configuration options for advanced users

o Optimization profile management per title

• Low-Latency Network Manager

Real-time tuning of network behavior for gaming (ping reduction, packet shaping)

• Overlay System

FPS, input latency, thermals, and resource usage visualized live during gameplay

• Input & Controller Suite

Support for remapping, latency reduction, and AI-assisted calibration

• Performance Scheduler

Dynamically balances system load to prioritize game threads and GPU usage

• Advanced GUI Panel for Gamers

Lets users toggle Gaming Mode, control overlays, tweak system optimization levels,

and manage AI involvement

• AI Assistant (when enabled outside of Gaming Mode)

Assists with shader caching, game modding, driver updates, and launcher

configuration,installation

Tiers

Zerco (Core Gaming Shell)

• No runtime AI during gameplay

• Mimic-based static optimization

• Advanced manual network and resource configuration

• Best for stable, low-resource or competitive use

Hashi (Performance Optimization Tier)

• Active optimization engine

• AI assists pre-game setup, then engine handles live performance tuning

• Adaptive system resource routing and real-time thermal control

Alphadeco (Creator + Automation Tier)

• AI-managed modding, game streaming setup, and content assistance

• Optimizer + hybrid runtime mod manager during gameplay

• Designed for content creators and streamers

Tier Compatibility and Transitions

• All Gamer Edition tiers are built with forward and backward compatibility in mind.

• A Zerco-tier system can be upgraded to Hashi or Alphadeco without reinstallation—

using modular update layers or via apt-repo and assistant-led setup.

• Similarly, higher tiers can revert to minimal modes by disabling features or switching

profiles manually or via AI.

• Optimizers, configs, and core environments are aware of lower and higher tier

schemas, ensuring smooth transitions across upgrades.

Whether you prefer a clean, no-overhead environment or a powerful AI-assisted gaming

setup, NeuroShellOS Gamer Edition adapts to your preferences and performance

requirements.

With Game Center, manual control, tier flexibility, and intelligent configuration systems, it

builds a Linux experience that understands what gamers actually need.

Privacy Edition

The Privacy Edition of NeuroShellOS is designed for users who prioritize digital sovereignty,

layered security, and full control over AI activity. Through strict modular separation and

privileged orchestration, it ensures that no component—AI or human-facing—can operate

outside its permitted boundaries.

From user prompts to AI-assisted automation, every action is traced, policy-gated, and

hardened with forensic-level protections. The system is intended not only to withstand

compromise but to actively neutralize, log, and recover from intrusion attempts.

This edition draws structural and architectural inspiration from security-focused systems like

Qubes OS, particularly in its modular compartmentalization of trust zones. However,

NeuroShellOS extends the concept further with integrated AI governance, encrypted

hardened layers, and responsive privacy mechanisms.

System Architecture Overview

1. AI Core

• Hosts the local LLM and supporting lightweight ML models.

• Operates entirely on-demand under AI Interface Controller approval.

• Cannot access network or system-level resources independently.

• Supports analysis, scanning, and summarization for security and diagnostics.

2. Network & Security Layer

• Provides a fully segmented networking stack with packet filtering, DNS hardening,

and outbound control.

• Cannot be accessed directly from the GUI or AI Core.

• Logs all connection attempts and validates protocol behavior.

• Communicates with the Hardened Core through trusted pathways only.

3. Security + Hardened Core

The Hardened Core is the highest-security zone within NeuroShellOS, responsible for

storage, monitoring, and protection against both internal and external threats. It is

architected to remain isolated from other domains and enforces zero-trust interaction

principles throughout.

This module is purpose-built for tasks such as:

• Securely storing encrypted user data

• Performing low-level integrity checks and malware analysis

• Executing internal audits and collecting logs from the system

• Managing and validating its own security updates

• Supporting threat recovery procedures and audit trails

Standalone Boot Mode (Isolated Execution Mode)

The Hardened Core can be booted separately from the main OS using a predefined boot key

(e.g., F9). This mode is specifically designed for recovery, manual inspection, or defensive

tasks, even if the main OS or GUI is compromised.

In this mode:

• Only a minimal, hardened GUI is presented for interactions

• No command-line access, scripting, or runtime execution is allowed

• Network access is handled via a dedicated isolated driver, enabled only as needed

• USB drivers are supported exclusively to allow users to copy encrypted files out of

the hardened environment

• No external writes are permitted back into the system through USB or network

• Updates related to the hardened subsystem or integrity tools can be initiated and

applied internally

This design allows users to retrieve important secured data or trigger recovery actions

without exposing the system to new threats during a compromised state. All outputs,

including decrypted results, system reports, or file copies, remain under strict output policy

control.

The Hardened Core maintains its independence from the AI Engine and the GUI, ensuring

that critical operations are never exposed to unintended automation or misused access

paths.

4. GUI + Terminal Layer

• Main user interaction zone.

• Provides antivirus tools, assistant integration, secure file upload interface, and OS

customization tools.

• Cannot execute system scripts or touch privileged files without policy.

• Capable of provoking updates, scans, or recovery actions from the Hardened Core via

AI Interface Controller routing.

• Users may securely transfer files from the GUI into the Hardened Core's encrypted

storage under policy-controlled mechanisms. All transfers are authorized via the AI

Interface Controller and require user confirmation to ensure intentional, secure

handling.

5. AI Interface Controller

• Manages all AI behavior and communications with core domains.

• Ensures that no AI can trigger updates, scans, or file access without policy and

explicit routing.

• Can delay or block AI actions during risky or unauthorized operations.

• Logs every decision and tracks all automation states.

Security Update and Maintenance Behavior

• Updates to the hardened modules or AI infrastructure can be initiated via GUI, but

are executed internally by the secure subsystems.

• Due to the depth and structure of the privacy and isolation mechanisms, updates

may take longer than in standard Linux distros.

o Each component must be validated, checksummed, and tested before

application.

o Hardened updates are signed, atomic, and verified in isolation before any

reboot.

• GUI users will be notified and optionally prompted before such updates.

• Bootable hardened mode also includes a secure offline updater interface, allowing

users to plug in signed update images manually.

Summary of Privacy Enhancements

• Hardened Core can operate autonomously and be booted independently.

• No scripts or userland access in hardened boot mode; only secured GUI and update

actions.

• Encrypted data can only be inserted from GUI and removed under strict policy.

• Two-tier antivirus across GUI and Hardened Core.

• Updates and encryption are cryptographically bound to the user's installation-time

configuration.

• Complete AI governance via Interface Controller with strict resource access gating.

Tiers in Privacy Edition

• Kryptomania Tier: Base layer offering foundational privacy functions, script-free GUI,

and minimal AI control with access to encrypted personal storage.

• KuKrypto Tier: Mid-level tier featuring integrated AI auditing, enhanced network

segmentation, USB key recovery access, on-demand AI security scanning, and

moderate system self-healing tools.

• SeKrypto Tier: Highest level offering fully compartmentalized operation, hardened AI

behavior with threat anticipation logic, dynamic forensic logs, isolated boot modes,

offline update processing, and full control of encryption key management.

Author's Note
This project is an independent effort and is not affiliated with or endorsed by Qubes OS or its

developers.

License:
This documentation is released under the Creative Commons Attribution-ShareAlike 4.0

International (CC BY-SA 4.0) license.

Author:
Muhammed Shafin P

GitHub: @hejhdiss

Acknowledgments

• The open-source operating system community for foundational principles

• AI/ML researchers advancing accessible and privacy-respecting AI

• Privacy advocates promoting user sovereignty in digital systems

• The broader Linux community for demonstrating collaborative development success

• The Privacy Edition of this project is conceptually inspired by Qubes OS.

https://github.com/hejhdiss
https://www.qubes-os.org/

